
68 Raje, Olson, Bryant, Burt and Auguston

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IV

UniFrame:
A Unified Framework

for Developing
Service-Oriented,
Component-Based

Distributed Software Systems
Rajeev R. Raje, Indiana University Purdue University, USA

Andrew M. Olson, Indiana University Purdue University, USA

Barrett R. Bryant, University of Alabama at Birmingham, USA

Carol C. Burt, University of Alabama at Birmingham, USA

Makhail Auguston, Naval Postgraduate School, USA

Abstract

This chapter introduces the UniFrame approach to creating high quality computing
systems from heterogeneous components distributed over a network. It describes how
this approach employs a unifying framework for specifying such systems to unite the
concepts of service-oriented architectures, a component-based software engineering
methodology and a mechanism for automatically finding components on a network in
order to assemble a specified system. UniFrame employs a formal specification
language to define the components and serve as a basis for generating glue/wrapper
code that connects heterogeneous components. It also provides a high level language
for the system developer to use for inserting code in a created system to validate it

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Uniframe: A Unified Framework for Developing Service-Oriented,
Component-Based Distributed Software Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Computer
Science,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Service-Oriented Software System Engineering: Challenges and Practices (Chapter IV, pp. 68-87).
Hershey,PA: Idea Group Publishing

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

20

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

UniFrame 69

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

empirically and estimate the quality of service it supports. The chapter demonstrates
how a comprehensive approach, which involves the practicing community as well as
technical experts, can lead to solutions of many of the difficulties inherent in constructing
distributed computing systems.

Introduction

The architecture of a computing system family can be represented by a business model
comprising a set of standard, platform independent models residing in a service layer,
each of which is related to a platform specific model that corresponds to one or more
specific realizations of the service. A system is realized by assembling the realizations
according to the specified architecture. This Service-Oriented Architecture offers many
advantages, such as flexibility, in constructing and modifying a computing system.
Because business requirements can change rapidly, both the services making up a
business model and their platform specific realizations may need to change rapidly in
response. With an agile mechanism to trace out an appropriate architecture, the devel-
opment engineer can react quickly by building a modified realization of the system.
Nevertheless, there are many practical issues that make effecting this process difficult.
For example, an environment in which this approach has greatest appeal is typically
distributed and heterogeneous. This makes the mapping of a system’s platform indepen-
dent model to a platform specific model (Object Management Group, 2002) quite complex
and subject to variation.

This chapter describes the basic principles of the UniFrame Project, which defines a
process, based on Service-Oriented Architecture, for rapidly constructing a distributed
computing system that confronts many of these inherent difficulties. UniFrame’s basic
objective is to create a unified framework to facilitate the interoperation of heterogeneous
distributed components as well as the construction of high quality computing systems
based on them. UniFrame combines the principles of distributed, component-based
computing, Model-Driven Architecture, service and quality of service guarantees, and
generative techniques.

Though better than handcrafting distributed computing systems, developing them by
composing existing components still poses many challenges. A comprehensive treat-
ment of these and the corresponding solutions that UniFrame proposes exceeds the
scope of this chapter, so it sketches the features of UniFrame that are most related to the
book’s service-oriented engineering theme along with references to further reading.

Background

Despite the achievements in software engineering, development of large-scale, decen-
tralized systems still poses major issues. Recent experience has demonstrated that the

70 Raje, Olson, Bryant, Burt and Auguston

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

principles of distributed, component-based engineering are effective in dealing with
them. Weck (1997), Lumpe, Schneider, Nierstrasz, and Achermann (1997), and the works
of Batory et al., for example, Batory and Geraci (1997), concern the composition of
components. The approach of Griss (2001) to developing software product lines is similar
to UniFrame’s, except that UniFrame avoids descending to code-fragment-sized compo-
nents. Brown (1999) surveys component-based system development, whereas Heineman
and Councill (2001) and Szyperski, Gruntz, and Murer (2002) provide extensive discus-
sions of different aspects.

Heineman and Councill (2001) provide a general definition of a component model. Many
different models for distributed, component-based computing have been proposed and
implemented. Among these, J2EE™ (Java 2 Enterprise Edition) and its associated
distributed computing model (Java-RMI), CORBA® (Common Object Request Broker
Architecture), and .NET® have achieved the greatest acceptance. Typically, each
prevalent model assumes the presence of homogeneous environments; that is, compo-
nents created using a particular model assume that any other components present adhere
to the same model. For example, the white paper on Java Remote Method Invocation
(2003) describes RMI as an extension of Java’s basic model to achieve distributed
computation, assuming, thus, an environment consisting of components developed
using Java and communicating with each other using method calls. Schmidt (2003)
provides an overview of CORBA, which indicates that CORBA does provide a limited
independence from the components’ development language and deployment platform by
specifying components with an interface definition language. This permits implementa-
tion in any languages for which mappings with the interface definition language exist.
Again, an implicit assumption is that, typically, a CORBA component will communicate
with another CORBA component. Microsoft’s .NET is intended as a programming model
for building XML™-based Web services and associated applications. It provides
language independence with an interface language and a common language runtime
(Microsoft .NET Framework, 2003). The implicit assumption of homogeneity still holds.

UniFrame

Current approaches for tackling heterogeneity are ad hoc in nature, requiring handcrafted
software bridges so have many drawbacks. It is difficult to make components of different
models interoperate, and handcrafting is known to be error prone. Moreover, depen-
dence on a single model meshes poorly with the grand notion of a component (or services)
bazaar over a distributed infrastructure, as the success of such a bazaar requires local
autonomy for deciding various policies, including the choice of the underlying model.
Thus, there is a need for a framework, such as UniFrame, that will support seamless
interoperation of heterogeneous, distributed components. UniFrame consists of:

• the creation of a standards-based meta-model for components and associated
hierarchical setup for indicating the contracts and constraints of the components;

UniFrame 71

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• an automatic generation of glue and wrappers for achieving interoperability;

• guidelines for specifying and verifying the quality of individual components;

• a mechanism for automatically discovering appropriate components on a net-
work;

• a methodology for developing distributed, component-based systems with ser-
vice-oriented architectures; and

• mechanisms for evaluating the quality of the resulting component assem-
blages.

UniFrame creates more general distributed systems than the point-to-point interactions
of current Web services and also emphasizes determining the Quality of Service (QoS)
during system assembly. For pragmatic reasons, UniFrame provides an iterative, incre-
mental process for assembling a distributed computing system (DCS) from services
available on the network that permit selecting among alternative components during
system construction. In order to increase the assurance of a DCS, UniFrame employs
automation, to the extent feasible, in the processes of locating and assembling compo-
nents, and of component and system integration testing. The ICSE 6th Workshop on
Component-Based Software Engineering: Automated Reasoning and Prediction (Crnkovic,
Schmidt, Stafford & Wallnau, 2003) focused on automated composition theories in
constructing a DCS. Although automation is a goal of UniFrame, it presently focuses on
the more practical, implementation aspects.

Unified Meta-Component Model (UMM)

Because future service-oriented systems will consist of independently developed
components adhering to various models, a meta-model that abstracts the features of
different models, enhances them and incorporates innovative concepts, is necessary in
order to facilitate their creation. Raje (2000) and Raje, Auguston, Bryant, Olson, and Burt
(2001) describe a central concept of UniFrame, the Unified Meta-component Model, that
does this. It consists of three parts: (a) components, (b) service and its guarantees, and
(c) infrastructure. These are not novel separately, but their structure, integration, and
interactions form the UMM’s distinguishing features. Components in the UMM have
public interfaces and private implementations, which may be heterogeneous. Each
interface comprises multiple levels. In addition to emphasizing a component’s functional
responsibilities (or the services it offers), the UMM requires component developers to
advertise and guarantee a QoS rating for each component. The UMM’s infrastructure
supplies the environment necessary for developing, deploying, publishing, locating,
assembling, and validating individual components and systems of components. The
following subsections expand upon these concepts.

72 Raje, Olson, Bryant, Burt and Auguston

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Component

The UMM defines a component as a sextuple consisting of the attributes (inherent,
functional, nonfunctional, cooperative, auxiliary, deployment). This view of a compo-
nent conforms to the definition of Szyperski, Gruntz, and Murer (2002). The inherent
attributes contain the bookkeeping information about a component, such as the author,
the version, and its validity period. The functional attributes of a component contain its
interface, along with the necessary pre- and post-conditions, and component model of
any associated implementation. They also indicate related details, such as algorithms
used, underlying design patterns and technology, and known usages. The nonfunc-
tional attributes represent the QoS parameters supported by the component, along with
their values that the component developer guarantees in a specific deployment environ-
ment. These attributes may also indicate the effects of the deployment environment and
usage patterns on the QoS values. The cooperative attributes describe how components
actively collaborate, exchanging services. The auxiliary attributes exhibit other charac-
teristics, such as mobility, various security features, and fault tolerance that the
components may possess. A component needs deployment rules, specified in the
deployment attributes so that it can be configured, initialized, and made available on a
network.

Service

As described by Raje (2000), this part of the UMM consists of the computational tasks
and guarantees that a component performs. To realize a DCS from a set of independently
created components, the system integrator needs to reason from the service assurance
of each component to obtain the assurance of the integrated DCS. Hence, a component
must provide a predetermined level of assurance of both its functional and nonfunctional
features. Various techniques, such as formal verification, have been proposed for
reasoning about the functional assurance of a DCS. Therefore, the UMM assumes the
use of an appropriate mechanism for functional assurance. The UniFrame research
focuses on assuring the nonfunctional features of components and the integrated
system because many existing application domains (multimedia, critical systems, and so
forth) depend not only on correct functionality but also on how well it is achieved.
UniFrame provides a mechanism for the component provider to specify the QoS
parameters that are applicable to a provided component and determine the ranges that
the component can guarantee.

Table 1 shows the UMM type specification of a component, Validation Server, for
validating user accesses within the application domain of document management. In the
advertised description of a corresponding implementation, the component provider
would supply the actual values for various fields (such as N/A in Table 1). For example,
the specification of a component that implements Validation Server would contain
details, such as the URL where the component is deployed (id), the guaranteed values
for the throughput and end-to-end delay, and the required deployment environment. The

UniFrame 73

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

specification associated with each implemented component is published when it is
deployed on the network. The UMM specification of a component enhances the concept
of a multilevel contract for components proposed by Beugnard, Jezequel, Plouzeau, and
Watkins (1999) because it includes other details, such as bookkeeping, collaborative,
algorithmic and technological information, and possible levels of service with asso-
ciated costs and effects of different environmental factors on the QoS parameters.

Abstract Component Type: ValidationServer

1. Component Name: ValidationServer
2. Domain Name: Document Management
3. System Name: DocumentManager
4. Informal Description: Provide the user validation service.
5. Computational Attributes:

5.1 Inherent Attributes:
5.1.1 id: N/A
5.1.2 Version: version 1.0
5.1.3 Author: N/A
5.1.4 Date: N/A
5.1.5 Validity: N/A
5.1.6 Atomicity: Yes
5.1.7 Registration: N/A
5.1.8 Model: N/A

5.2 Functional Attributes:
5.2.1 Function description: Act as validation server for users in the system.
5.2.2 Algorithm: N/A
5.2.3 Complexity: N/A
5.2.4 Syntactic Contract
5.2.4.1 Provided Interface: IValidation
5.2.4.2 Required Interface: NONE
5.2.5 Technology: N/A
5.2.6 Expected Resources: N/A
5.2.7 Design Patterns: NONE
5.2.8 Known Usage: Validation of user access
5.2.9 Alias: NONE

6. Cooperation Attributes:
6.1 Preprocessing Collaborators: Users’Terminal
6.2 Postprocessing Collaborators: NONE

7. Auxiliary Attributes:
7.1 Mobility: No
7.2 Security: L0
7.3 Fault tolerance: L0

8. Quality of Service Attributes
8.1 QoS Metrics: throughput, end-to-end delay
8.2 QoS Level: N/A
8.3 Cost: N/A
8.4 Quality Level: N/A
8.5 Effect of Environment: N/A
8.6 Effect of Usage Pattern: N/A

9. Deployment Attributes: N/A

Table 1. UMM type specification of a component

74 Raje, Olson, Bryant, Burt and Auguston

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Infrastructure

UniFrame assumes the presence of a publicly accepted knowledgebase that contains
information, such as the component types needed for a specific application domain, the
interconnections and constraints that make up the design specification of each compo-
nent system in a domain, and rules for QoS calculations. Experts, such as standards
organizations’ task forces, create the UMM specifications for the components of each
application domain of the knowledgebase. The UMM specifications of the component
types are publicly distributed so that component developers can supply implementa-
tions that adhere to them.

UniFrame’s Infrastructure consists of the System Generation Process, Resource Discov-
ery Service (URDS), and Glue and Wrapper Generator. The first employs the
knowledgebase to carry out the steps in creating a component system. It invokes the
URDS to locate the components in the network the system requires and validates the
product using an iterative process. The URDS provides mechanisms for components to
publish their UMM specifications and for hosting the services on distributed machines,
receives appropriate queries for locating the deployed services, and performs the
selection of necessary components based upon specified criteria. It invokes the Glue and
Wrapper Generator, which accommodates the heterogeneity across components, incor-
porates the mechanisms necessary to measure the QoS, and configures the selected
services. Subsequent sections will provide more details about these.

Service-Oriented Architecture

In order to provide flexible, efficient support to the process of creating a DCS, UniFrame
organizes its knowledgebase according to the concepts of Model-Driven Architecture
proposed by the Object Management Group (2002) and Business Line Architecture
proposed by Enterprise Architecture SIG (2003a). Its UMM provides an underlying
framework for this organization. The domain elements in the top tier of the architecture
correspond to different business contexts, or lines. A context consists of a class of
related business practice domains (such as, retail grocery, retail hardware, construction
supply, wholesaler), which are located in the next tier down. Conceptually, elements on
one level can share an element on another (health care and construction can share
inventory), which differs in how it performs similar operations in different contexts (that
is, the element comprises a set of variants). The various, hierarchically organized
elements that contribute detail to the definition of a business context constitute its
Business Reference Model, discussed in Succeeding with Component-Based Architec-
ture by Enterprise Architecture SIG (2003b). This takes the form of a tree, whose root
represents the context in the architecture under consideration. Business domain experts
perform requirements analysis and model the business contexts for which it is desired
to construct DCSs. The Business Reference Models they derive and place in the
knowledgebase define the space of problems UniFrame can solve.

UniFrame 75

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For each Business Reference Model, software engineers construct design models in
various ways to implement DCSs that satisfy its requirements. A design model is
expressed, frequently in Unified Modeling Language (UML®) (Rumbaugh, Jacobson &
Booch, 1999), in terms of tiered layers of components, each component offering a defined
set of services. Several Business Reference Models can share components. A compo-
nent in one tier can be composed (or use of the services) of components on a lower tier.
Thus, a component has two definition forms in the knowledgebase:

• a specification of its abstract properties as a type, as in Table 1, or

• a design specification, following UMM standards, that directly references the
components and refined design specifications of which it uses.

The former is called an abstract component, which the UniFrame System Generation
Process considers to be available with no construction necessary. The second form is
called a compound component. The process will attempt to construct it from its design.
A design specification that defines a realization of a Business Reference Model forms
a Service Reference Model for it. It provides a vehicle for realizing the Model-Driven
Architecture’s mapping from a platform-independent model to a platform-specific model.
The Service Reference Models also form part of UniFrame’s knowledgebase.

In order to construct DCS solutions for a significant space of problems, the knowledgebase
must contain matching (Business Reference Model, Service Reference Model) pairs for
each problem variation anticipated. These can be organized efficiently by structuring
related Business Reference Models in feature models according to the optional features
that they exhibit and related Service Reference Models according to variation point
stereotypes that show which design variants are available. The experts create a domain-
specific language based on the distinguishing features and variation points in the
models. Then, users of the System Generation Process employ the language to specify
their requirements. The following example illustrates the knowledgebase’s organization.

Case Study

Suppose domain experts want to create a knowledgebase that includes the business
context consisting of users who manage documents. The users’ contact with the
supporting system is via the use case Manage Documents, which includes Validate
User. The use cases Create Document, Delete Document, List Documents, Store
Document, and Get Document all extend Manage Documents. The last in this list includes
Lock Document, whereas the others include Unlock Document. From the requirements
these express, the domain experts identify three subsystems comprising the system: one
for user validation, one for managing the documents themselves, and one for user
interaction. The experts write a domain model for this system containing these three
subsystems.

76 Raje, Olson, Bryant, Burt and Auguston

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Suppose the experts decide the users may want to choose between two types of
document manager systems: a standard document manager and a deluxe one that
provides extended persistence support. They represent these options in a simplified
feature diagram for the document manager, as shown in Figure 1. Clear small circles
indicate optional features, whereas an arc indicates an exclusive OR choice. In more
general feature diagrams (Griss, 2001), options of a node can be chosen as any
combination of elements of a subset of the node’s children. A feature diagram carries no
information about how its alternatives might be associated with elements in the domain
model of their parent node. It is an efficient mechanism for representing alternatives; the
domain models are essential for representing the associations among elements in the
models and the constraints on them. The domain model for the standard document
manager consists of only one domain element, Document Server. The domain model for
the deluxe document manager consists of two domain elements, Deluxe Document Server
and its associated Document Database for persistence. Because there are just two
alternatives in the feature diagram, there are just two Business Reference Models in this
example. More generally, there will be as many as there are combinations permitted by
the various feature diagrams present in the knowledgebase.

Software engineers experienced in the domain of the business context (document
management here) develop design models for these two Business Reference Models.
They create a service-oriented architecture of abstract components so that domain
models map to component-based design models. Figure 2 shows the Service Reference
Model, Standard Document System, for the Business Reference Model of the Standard
Document Manager for this example. The Service Reference Model, Deluxe Document
System, for the Deluxe Document Manager is identical, with the addition of a Database
component associated with the Document Server, where the cardinality allows an
arbitrary, positive number of Database units to be present. The Service Reference
Models include the details defining the associations among the components. These
might be views consisting of UML collaboration diagrams. This information is used to
determine the entries in the UMM abstract component specifications and the interrela-
tions of the components’ interfaces. The specification for the abstract component,
Validation Server, appeared in Table 1.

Suppose that the software engineers decide that two implementations of the standard
document manager are possible, one in which the components adhere to .NET and the

DM

SDM DDM

Legend:
 OF: Other Features

DM: Document Manager
SDM: Standard Document Manager
DDM: Deluxe Document Manager

OF

Figure 1. Feature diagram for the document management system

UniFrame 77

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

other to CORBA. They indicate this choice by a design model, labeled Standard
Document System, augmented by variation point information that specifies the choice
of one of these two technologies for the associations in Figure 2, such as in OCL (Warmer
& Kleppe, 2003), as shown:

context Standard Document System

inv: technology = ‘.NET’ or technology = ‘CORBA’

Because the system consists of more than two components, the engineers have other
combinations possible. For example, the Users’ Terminal/Validation Server association
may be in .NET technology, and the Document Server may be in CORBA technology,
implying the need for an appropriate bridge.

UniFrame System Generation Process

The essential steps in UniFrame’s process of constructing a DCS to solve a problem
appear in Table 2. Once the UniFrame knowledgebase is available, a system developer
can pose a statement of requirements for a DCS that solves a problem within its
application domain. This analysis task forms step (1) in Table 2. For the case study in
the previous section, the statement of requirements might be:

Create a Document Management System having a Standard Document Manager.

In step (2), the term Document Management System of the example requirements
statement identifies the business context, so the stated problem lies within the domain
the knowledgebase represents. The corresponding system model shows there are two
alternatives for the Document Manager, which the feature model displays in Figure 1.
The qualifying requirement, Standard, resolves this ambiguity, which completes step (2).
The resulting Business Reference Model maps directly in the knowledgebase to the two
alternative platform-specific Service Reference Models for the entire system shown in

1..* 1..*

UT

VS DS

Legend:
 UT: Users' Terminal
 VS: Validation Server
 DS: Document Server

Figure 2. Service reference model for the standard document system

78 Raje, Olson, Bryant, Burt and Auguston

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 2, in which the components are either all .NET or all CORBA. This completes
step (3).

Continuing to step (4), the System Generation Process collects the UMM type specifi-
cations of all the abstract components involved in each of the two Service Reference
Models and sends them in a query to the UniFrame Resource Discovery Service. This
searches the network for implemented components whose UMM descriptions satisfy the
type specifications.

Step (5) employs the design information in a Service Reference Model to construct a DCS
with the components found. If the appropriate implementations are available on the
network, the request for a Standard Document Manager in the example will yield two
DCSs, one with .NET technology and one with CORBA technology. If no .NET implemen-
tation of a Validation Server is found, then only the CORBA DCS will be constructed.

Typically, a developer understands the requirements poorly at the initiation of the
System Generation Process. Therefore, it is imperative to evaluate empirically the
consistency of the characteristics of a generated DCS with the perceived requirements
and make modifications as necessary. This motivates having step (6) in Table 2. Such
iterative development provides a mechanism for the developer to validate the outcome
of the process and determine empirically the ranges within which its QoS attributes vary.
This helps to assure a higher quality product. The process allows two levels of testing.
The simplest is black box (or acceptance) testing of the DCS based on only the stated
requirements. The developer supplies a test harness and plan for this. The other is white
box (or integration) testing, again based on the developer’s test plan. In this case, the
design of the DCS serves as a guide for inserting instrumentation code between the
components in the DCS. At runtime, this code reports the behavior of the DCS, giving
the developer a view into its internal operation. The section on the measurement of QoS
discusses a mechanism for inserting this instrumentation easily.

In case there are several Business or Service Reference Models in the knowledgebase
that satisfy the developer’s requirements if step (2) or (3) of the process provides
feedback, allowing the developer to introduce requirements incrementally so as to reduce

Steps Activities
1 State the requirements the DCS must satisfy in the knowledgebase's

terminology.
2 Identify a Business Reference Model that represents these.
3 Identify each Service Reference Model specifying a system of

abstract components that satisfies the Business Reference Model.
4 Obtain concrete implementations of the abstract components.
5 Assemble the concrete components into a DCS according to each

Service Reference Model, so that it meets the specified
requirements.

 6 Test the DCS against the requirements and exit if satisfactory;
otherwise, return to step (1) to modify the requirements.

Table 2. Steps in the UniFrame System Generation Process

UniFrame 79

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

these alternatives, then the process becomes an efficient way to construct the needed
type of DCS. Thus, the System Generation Process supports the iterative, incremental
development paradigm that modern software engineering practices have found produc-
tive.

UniFrame Resource
Discovery Service (URDS)

Once components and their UMM descriptions have been deployed on the network, they
are ready for discovery in the UniFrame System Generation Process. The URDS executes
this process. Siram et al. (2002) discusses its architecture, shown in Figure 3.

The URDS architecture comprises: HeadHunters (HHs), Internet Component Broker
(ICB), Meta-repositories (MRs), and components.

Components are implemented according to some component model, as described earlier,
and registered with the model’s binding service. For example, the Java-RMI components
are registered with the Naming service provided by the Java-RMI framework. An

DSM QM LM AM

C1 C2 AC1 AC2

www

Active
Registry

RMI

S1

S2

S3

Active
Registry

ORB

S4

S5
Active
Registry

.Net

S6

S7

S8

Head Hunter Head Hunter Head Hunter

MR
MR MR

ICB

Figure 3. UniFrame Resource Discovery System (URDS)

80 Raje, Olson, Bryant, Burt and Auguston

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

advantage of this is that it does not burden the component providers as to deploy their
implementations, they must register them anyway. The HHs have the sole responsibility
of performing matchmaking operations between registered components and requested
specifications. Each HH has an MR, which serves as a local store. An HH is constantly
discovering newly implemented components and storing their UMM specifications in its
MR. Anytime an HH receives a query for a component type, it first searches its MR. If
it finds a match, it returns the corresponding component as a result. If not, it propagates
the query to other HHs in the system.

The ICB is analogous to the object request broker (ORB) in other architectures. Unlike
the ORB, which only allows interoperation between components having heterogeneous
implementations, the Internet component broker allows interoperation between compo-
nents with different component models. As Figure 3 shows, the Internet component
broker consists of domain security manager (DSM), query manager (QM), link manager
(LM), and adapter manager (AM). The DSM is responsible for enforcing a security
structure on the URDS. It authenticates the HHs and allows them to communicate with
different binding mechanisms (registries). The QM interfaces with the System Generation
Process. It receives a query consisting of a collection of UMM component types, passes
it to the HHs, and returns the results. The LM allows a federation of URDSs to be created
in order to increase the component search space. The AM locates adapter components,
such as bridges that allow interoperation of different component models, and passes
them to the Glue and Wrapper Generator.

A prototype of URDS has been implemented using the Java-RMI and .NET technologies.
Many experiments have been performed to measure its performance (Siram et al., 2002).
These demonstrate that URDS scales upward, but the details extend beyond this
chapter’s scope.

Industry and academia have proposed and implemented many distributed resource
discovery and directory services. Examples that Siram et al. (2002) describe include
WAIS, Archie, Gopher, UDDI, CORBA Trader, LDAP, Jini, SLP, Ninf, and NetSolve. Each
has its own characteristics and exhibits some similarity with URDS. The distinguishing
features of URDS are its treatment of heterogeneity and its purpose to support creating
heterogeneous integrated systems, not just to discover services.

UniFrame Quality of
Service Framework (UQoS)

Components offer services and indicate and guarantee the quality of their services.
Therefore, it is necessary to facilitate the publication, selection, measurement, and
validation of component and DCS QoS values. The UniFrame Quality of Service
Framework, described by Brahnmath (2002); Sun (2003); and Raje, Bryant, Olson,
Auguston, and Burt (2002), provides necessary guidelines for the component developers
and system integrators using UniFrame. The UQoS consists of three parts: QoS catalog,

UniFrame 81

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

composition/decomposition models for QoS parameters, and specification and measure-
ment of QoS. The reader is referred to the references above for the first two because the
details are extensive.

To prepare the UMM description of a component to be publicized, the component
developer must measure empirically the QoS parameters in the corresponding UMM type
specification. The QoS catalog provides model definitions and formulas to assist in this.
Some parameters are static in nature (like reliability), while some are dynamic (like end-
to-end delay). If the parameter is static and characterizes a system of components, then
its value can be determined from the components’ parameter values. Otherwise, its value
must be determined empirically.

Evaluation of QoS Parameters

UniFrame uses the principles of event grammars for measuring parameters empirically.
Event grammar, as described by Auguston (1995), forms the basis for system behavior
models. An event represents any detectable action during execution, such as a statement
execution, expression evaluation, procedure call, and receiving a message. It has a
beginning, end, and duration (a time interval corresponding to the action of interest).
Actions (or events) evolve in time, and system behavior represents the temporal
relationship among actions. This implies a partial ordering relation for events, as Lamport
(1978) discussed.

System execution can be modeled as a set of events (event trace) with two basic relations:
partial ordering and inclusion. The event trace actually is a model of the system’s
temporal behavior. In order to specify meaningful system behavior properties, events
must be enriched with attributes. An event may have a type and other attributes, such
as duration, source code related to the event, associated state (that is, variable values
at the event’s beginning and end), and function name and returned value for function
call events.

A special programming language, FORMAN, for computations over event traces greatly
facilitates measuring parameters empirically. As described by Fritzson, Auguston, and
Shahmehri (1994) and Auguston (1995), it is based on the notions of the functional
paradigm, event patterns, and aggregate operations over events.

The execution model of a component (or a system of integrated components) is defined
by an event grammar, which is a set of axioms that describes possible patterns of basic
relations between events of different types in a program execution trace. It is not intended
to be used for parsing actual event traces. If an event is compound, the grammar describes
how it splits into other event sequences or sets. For example, the event execute-
assignment-statement contains a sequence of events evaluate-right-hand-part and
execute-destination.

The rule A :: (B C) establishes that, if an event a of the type A occurs in the trace of a
program, it is necessary that events b and c of types B and C, also exist, such that the
relations b IN a, c IN a, b PRECEDES c hold. For example, the event grammar describing

82 Raje, Olson, Bryant, Burt and Auguston

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the semantics of an imperative programming language may contain the following rule (the
names, such as execute-program and ex-stmt in the grammar denote event types):

execute-program :: (ex-stmt *)

This means that each event of the type execute-program contains an ordered (w.r.t.
relation PRECEDES) sequence of zero or more events of the type ex-stmt. For the function
call event, the event grammar may provide the following rule:

func_call:: (param *) (ex-stmt *)

This event may contain zero or more parameter evaluation events followed by statement
executions.

Example of Evaluating Turn-Around Time

If the event type component_call corresponds to the whole component call event and
request denotes the event for a single request (the time interval from the request’s
beginning to its completion), then the following FORMAN formula specifies the mea-
surement of the turn-around time:

FOREACH a: session FROM execute_program

SAY (‘Turn-around Time for a session is ‘

SUM[b: request FROM a APPLY b.duration]

/ CARD[request FROM a])

Similar rules can be specified for any other dynamic QoS parameters or related compu-
tations. Thus, the principles of event traces provide a mechanism to validate empirically
the QoS values for a component and for an integrated system of components.

Interoperability Using the
Glue and Wrapper Generator

For interoperation of heterogeneous distributed components, it is necessary to con-
struct glue and wrapper code to interconnect the components. Because a project
objective is to achieve high quality systems, a goal is to automatically generate the glue/
wrapper code. In order to achieve this, there should be formal rules for interconnecting

UniFrame 83

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

components from a specific application domain as well as integration of multiple
technology domains, that is, component models. UniFrame uses the Two-Level Grammar
(TLG, also called W-grammar) formal specification language (Bryant & Lee, 2002) to
specify both types of rules. The TLG formalism is used to specify the components
deployed under UniFrame and also the generative rules needed for system assembly. The
output of the TLG will provide the desired target code (for example, glue and wrappers
for components and necessary infrastructure for the distributed runtime architecture).
The UMM formalization establishes the context for which the generative rules may be
applied. Bryant, Auguston, Raje, Burt, and Olson (2002) provide further details about the
glue/wrapper code generation rules, including a discussion of how the Quality of Service
validation code is inserted into the glue code. The general principle is that for each QoS
parameter to be dynamically verified, the glue code is instrumented according to the
event grammar rules described earlier.

Future Trends

The concept of Business Reference Models “is meant to provide the foundation for
common understanding of business processes across the Federal government in a
service-oriented manner,” enabling an agency to define an enterprise architecture as
mandated by law, (Enterprise Architecture SIG, 2003). A significant sector of industry is
involved in establishing standards and guidelines on how to enable successful enter-
prise architecture. The component-based architecture of UniFrame’s knowledgebase
closely follows these guidelines, incorporating the concepts of Object Management
Group’s (2002) Model-Driven Architecture as an integral part. Consequently, UniFrame
is working toward the realization of an operational framework for enterprise architecture
and is a source of feedback into the activities necessary.

Many existing component models provide the necessary mechanisms for describing the
functional aspects of components but not for the QoS aspects. Standards organizations
have recently started to address this weakness. For example, in the fall of 2000, the OMG
began issuing a number of Requests for Proposals for UML profiles for modeling QoS
in several contexts. UniFrame is addressing some of these QoS issues and is making
efforts (via presentations to different OMG task forces) to ensure that its research is
aligned with emerging industry standards.

The creation of the Business Line and Service-Oriented knowledgebase will largely
continue to be a human endeavor aided by CASE tools because humans determine what
constitutes the problems they must solve. However, the System Generation Process
could be accomplished mostly automatically for any problem in a given knowledgebase.
The person who formulates the requirements for the DCS will need to do so in the
knowledgebase’s terminology. The degree to which this can be made to match the typical
user’s terminology remains a research area.

Huang (2003) implemented a prototype of the UniFrame System Generation Process with
the UniFrame Resource Discovery Service. Because of the labor involved in constructing
the knowledgebase, it was limited to a small banking case study. Experimental studies

84 Raje, Olson, Bryant, Burt and Auguston

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

proved efficient, user communication issues were easily managed, and QoS values were
calculated. The automated creation of bridges and glue/wrapper code and using FORMAN
to insert the code into them for the QoS computations remain to be incorporated into the
implementation.

Conclusion

This chapter has described the UniFrame process for constructing distributed comput-
ing systems and has shown how it facilitates achieving the current goals of government
and industry in rapidly creating high quality computing systems. UniFrame provides a
framework within which a diverse array of technologies can be brought to achieve these
ends. These include software engineering practices, such as rapid, iterative, and
incremental development. Its business line, service-oriented, model-driven architecture
based on components is a realization of the movement to provide mutability, quick
development, and conservation of resources. A knowledgebase of component-based,
predefined and tested designs for distributed computing systems, event traces for
empirical testing, and quality of service prediction and calculation are tools it utilizes for
increasing quality assurance. UniFrame decouples the requirements analysis and system
assembly activities from the problem of collecting appropriate components published on
the network. Its novel resource discovery service facilitates the efficient acquisition of
components meeting stated specifications. It provides a mechanism for seamlessly
bridging components of different models, such as RMI and CORBA, to support the
construction of heterogeneous, distributed computing systems having platform-inde-
pendent definitions. The UniFrame project is also investigating techniques and patterns
related to using quality of service parameters during the design of components and
integrated systems to create high assurance distributed computing systems.

Acknowledgments

This work was supported in part by the U.S. Office of Naval Research, grant N00014-01-
1-0746.

References

Auguston, M. (1995). Program behavior model based on event grammar and its
application for debugging automaton. In M. Ducassé (Ed.), Proceedings of the
2nd International Workshop on Automated and Algorithmic Debugging
(AADEBUG’95) (pp. 277-291), Rennes: Université de Rennes.

UniFrame 85

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Batory, D., & Geraci, B. (1997). Component validation and subjectivity in GenVoca
generators. IEEE Transactions on Software Engineering, 23(2), 67-82.

Beugnard, A., Jezequel, J., Plouzeau, N., & Watkins, D. (1999). Making components
contract aware. IEEE Computer, 32(7), 38-45.

Brahnmath, G. (2002). The UniFrame Quality of Service Framework. Unpublished
master’s thesis, Indiana University Purdue University, Indianapolis, IN, United
States. Retrieved August 8, 2004: http://www.cs.iupui.edu/uniFrame/

Brown, A. (1999). Building systems from pieces with component-based software engi-
neering. In P. Clements (Ed.), Constructing superior software (Chapter 6). India-
napolis, IN: MacMillan Technical.

Bryant, B. R., Auguston, M., Raje, R. R., Burt, C. C., & Olson, A. M. (2002). Formal
specification of generative component assembly using two-level grammar. Pro-
ceedings of SEKE 2002, 14th International Conference on Software Engineering
and Knowledge Engineering (pp. 209-212). Los Alamitos: IEEE Press.

Bryant, B. R., & Lee, B.-S. (2002). Two-Level grammar as an object-oriented require-
ments specification language. Proceedings of HICSS-35, the 35th Hawaii Interna-
tional Conference on System Sciences (p. 280). Los Alamitos, CA: IEEE Press.
Retrieved August 8, 2004: http://www.hicss.hawaii.edu/HICSS_35/HICSSpapers/
PDFdocuments/STDSL01.pdf

Crnkovic, I., Schmidt, H., Stafford, J., & Wallnau, K. (Eds.). (2003). Proceedings of the
6th Workshop on Component-Based Software Engineering: Automated Reason-
ing and Prediction. 25th International Conference on Software Engineering (ICSE).
Los Alamitos, CA: IEEE Press. Retrieved August 8, 2004: http://
www.csse.monash.edu.au/~hws/cgi-bin/CBSE6

Enterprise Architecture SIG, Industrial Advisor Council (IAC). (2003a, March). Business
line architecture and integration. Retrieved August 8, 2004: http://216.219.201.97/
documents_presentations/index.htm

Enterprise Architecture SIG, Industrial Advisor Council. (2003b, March). (IAC). Suc-
ceeding with component-based architecture in e-government. Retrieved August 8,
2004: http://216.219.201.97/documents_presentations/index.htm

Fritzson, P., Auguston, M., & Shahmehri, N. (1994). Using assertions in declarative and
operational models for automated debugging. The Journal of Systems and Soft-
ware, 25, 223-239.

Griss, M. L. (2001). Product line architectures. In G. T. Heineman, & W. T. Councill (Eds.),
Component-based software engineering: Putting the pieces together (pp. 405-
420). Boston: Addison-Wesley.

Heineman, G. T., & Councill, W. T. (Eds.). (2001). Component-based software engineer-
ing: Putting the pieces together. Boston: Addison-Wesley.

Huang, Z. (2003). The UniFrame system-level generative programming framework.
Unpublished master’s thesis, Indiana University Purdue University, Indianapolis,
IN, United States. Retrieved August 8, 2004: http://www.cs.iupui.edu/uniFrame

Java Remote Method Invocation – Distributed computing for Java. (2003, October 2).
Retrieved August 8, 2004: http://java.sun.com/marketing/collateral/javarmi.html

86 Raje, Olson, Bryant, Burt and Auguston

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7), 558-565.

Lumpe, M., Schneider, J., Nierstrasz, O., & Achermann, F. (1997). Towards a formal
composition language. In G. T. Leavens & M. Sitamaran (Eds.), Proceedings of the
1st ESEC Workshop on Foundations of Component-Based Systems (pp. 178-187).
Heidelberg: Springer-Verlag.

Microsoft .Net Framework: Technology overview. (2003, October 2). Retrieved August
8, 2004: http://msdn.microsoft.com/netframework/technologyinfo/overview/

Object Management Group. Model-Driven Architecture™, the architecture of choice for
a changing world. (2002, March 12). Retrieved August 8, 2004: http://www.omg.org/
mda

Raje, R. (2000). UMM: Unified Meta-object Model for open distributed systems. Proceed-
ings of the Fourth IEEE International Conference on Algorithms and Architecture
for Parallel Processing (ICA3PP 2000) (pp. 454-465). Los Alamitos, CA: IEEE Press.

Raje, R., Auguston, M., Bryant, B., Olson, A., & Burt, C. (2001). A unified approach for
integration of distributed heterogeneous software components. Proceedings of
the Monterey Workshop on Engineering Automation for Software Intensive
System Integration, SEAC technical report (pp. 109-119). Monterey, CA: U.S.
Naval Postgraduate School. Retrieved August 8, 2004: http://www.cs.iupui.edu/
uniFrame/

Raje, R., Bryant, B., Olson, A., Auguston, M., & Burt, C. (2002). A quality-of-service-
based framework for creating distributed heterogeneous software components.
Concurrency and Computation: Practice and Experience, 14, 1009-1034.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The Unified Modeling Language
reference manual. Reading, MA: Addison Wesley.

Schmidt, D. (2003, October 2). Overview of CORBA. Retrieved August 8, 2004: http://
www.cs.wustl.edu/~schmidt/corba-overview.html

Siram, N., Raje, R., Olson, A., Bryant, B., Burt, C., & Auguston, M. (2002). An architecture
for the UniFrame Resource Discovery Service. Proceedings of the 3rd Interna-
tional Workshop of Software Engineering and Middleware: Vol. 2596. Lecture
Notes in Computer Science (pp. 20-35). Heidelberg: Springer-Verlag.

Sun, C. (2003). QoS composition and decomposition models in UniFrame. Unpublished
master’s thesis, Indiana University Purdue University, Indianapolis, IN, United
States. Retrieved August 8, 2004: www.cs.iupui.edu/uniFrame

Szyperski, C., Gruntz, D., & Murer, S. (2002). Component software - Beyond object-
oriented programming. (2nd ed.). Boston: Addison-Wesley/ACM Press.

Warmer, J., & Kleppe, A. (2003). The Object Constraint Language. (2nd ed.). Boston:
Addison-Wesley.

Weck, W. (1997, June). Independently extensible component frameworks. In M.
Mühlhäuser (Ed.), Proceedings of the 1st International Workshop on Component-

UniFrame 87

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Oriented Programming (European Conference on Object-Oriented Program-
ming, Jyväskylä, Finland), Special Issues in Object-Oriented Programming (pp.
177-188). Heidelberg: Springer-Verlag.

